首页> 外文OA文献 >Robust Model Predictive Control for Non-Linear Systems with Input and State Constraints Via Feedback Linearization
【2h】

Robust Model Predictive Control for Non-Linear Systems with Input and State Constraints Via Feedback Linearization

机译:具有输入和状态约束的非线性系统通过反馈线性化的鲁棒模型预测控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robust predictive control of non-linear systems under state estimation errors and input and state constraints is a challenging problem, and solutions to it have generally involved solving computationally hard non-linear optimizations. Feedback linearization has reduced the computational burden, but has not yet been solved for robust model predictive control under estimation errors and constraints. In this paper, we solve this problem of robust control of a non-linear system under bounded state estimation errors and input and state constraints using feedback linearization. We do so by developing robust constraints on the feedback linearized system such that the non-linear system respects its constraints. These constraints are computed at run-time using online reachability, and are linear in the optimization variables, resulting in a Quadratic Program with linear constraints. We also provide robust feasibility, recursive feasibility and stability results for our control algorithm. We evaluate our approach on two systems to show its applicability and performance.
机译:在状态估计误差以及输入和状态约束下的非线性系统的鲁棒预测控制是一个具有挑战性的问题,解决该问题的方法通常涉及解决计算困难的非线性优化问题。反馈线性化减轻了计算负担,但尚未解决在估计误差和约束下实现鲁棒模型预测控制的问题。在本文中,我们使用反馈线性化解决了在有界状态估计误差以及输入和状态约束下非线性系统的鲁棒控制问题。我们通过在反馈线性化系统上开发鲁棒约束来做到这一点,以使非线性系统遵守其约束。这些约束是在运行时使用在线可达性计算的,并且在优化变量中是线性的,从而导致具有线性约束的二次程序。我们还为我们的控制算法提供了鲁棒的可行性,递归可行性和稳定性结果。我们在两个系统上评估我们的方法,以显示其适用性和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号